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Abstract. We propose a simple statistical mechanical theory for a strongly dipolar fluid at low
densities, based on the analogy between a system of polydisperse linear chains and the equilibrium
structure of these fluids as revealed by computer simulations. At low densities, both steric and
dipolar interactions between long chains are weak and thus the dipolar fluid is well described
as an ideal gas of polydisperse chains. We have further investigated how the residual dipolar
interaction between monomers and/or additional isotropic attractions between the spheres cause
the dissociation of the chains and/or the condensation of the dipolar fluid.

1. Introduction

In recent years there has been renewed interest in the thermodynamic and structural properties
of dipolar fluids. Numerical simulations revealed an entirely new behaviour, not predicted by
existing theories: formation of chain-like structures for strongly dipolar fluids (with [1–3] or
without [4,5] an applied magnetic field) at low densities, the appearance of a ferromagnetically
ordered fluid phase [6, 7] and the absence of liquid–vapour condensation unless external
magnetic fields [1, 3] or isotropic attractions between the spheres are turned on [8]. Various
theoretical approaches were proposed to investigate these new features: integral equations [9]
and density functional theory [10] were used to describe the ferromagnetic fluid phase, and
models for associating fluids, treated within mean-field approximations, were used to describe
the absence of condensation of dipolar hard spheres (DHS) and the onset of chain formation
at low densities [11–14].

2. Independent chains

We consider a system of hard spheres with radius σ and embedded dipoles of strength µ,
interacting through the pair potential

φDHS =



∞ r12 < σ

−µ2

r3
12

[
3(µ̂1 · r̂12)(µ̂2 · r̂12)− µ̂1 · µ̂2

]
r12 � σ .

(1)

r12 is the distance between the centres of the spheres, r̂12 the unit interdipolar vector, and µ̂1

and µ̂2 the unit dipolar vectors of spheres 1 and 2, respectively. We define the reduced dipole
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moment (or square root of the inverse reduced temperature) as

µ∗ =
(

µ2

kBT σ 3

)1/2

. (2)

kB is Boltzmann’s constant and T the absolute temperature.
The dipole–dipole potential (1) has a global minimum when the dipoles of two spheres at

contact are aligned ‘head to tail’. It is expected that, at sufficiently high dipole moments, this
structure will reveal itself, at least locally. Indeed, snapshots of equilibrium configurations
[4, 14] show that dipolar spheres self-assemble forming linear structures that may span the
simulation box, indicating that the dipole–dipole potential induces strong many-body spatial
and angular correlations, at low density and temperature (large reduced dipole moment).

A direct calculation of these many-body correlations is not feasible by simulation or
theoretically. In fact, standard mean-field theory based on the hard-sphere reference system
does not describe the onset of chain formation. An approach that is useful both in the analysis
of simulation results and in a theoretical description has been used, namely that of assuming
that the many-body correlations are described accurately by the size distribution function of
an assembly of chains [1, 2, 4, 5, 11, 12, 14]. The equilibrium structure of the system is then
given in terms of the thermal distribution of chain lengths.

In the following we recall the derivation of the free energy of an ideal mixture of
polydisperse chains [11–14]. Consider a system of N monomers in volume V , assembled
as non-interacting chains of length i = 1, . . . , N . If Mi is the number of chains of length i,
the partition function is

Z =
N∏
i=1

q
Mi

i

Mi!
(3)

where qi is the partition function of a chain with i monomers. The number of monomers is
conserved and thus

N =
N∑
i=1

iMi. (4)

In the thermodynamic limit, the Helmholtz free-energy density, f , is derived from (3):

βf =
∞∑
i=1

ρi(ln ρi − 1 − ln q̃i ) (5)

where ρi = Mi/V and q̃i = qi/V . In this limit, the constraint (4) becomes

ρ =
∞∑
i=1

iρi . (6)

The Helmholtz free energy (5) is expected to describe the system at low densities, when
the interactions between monomers of different chains can be neglected [12]. From (5), the
chemical potential of species i, i.e., of chains of length i, is found to be

βµi = ln ρi − ln q̃i . (7)

Chemical equilibrium among chains is obtained through reactions that conserve the number
of monomers, such as

i monomers � one chain with i monomers (8)

implying that the chemical potentials satisfy

µi = iµ1. (9)
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Using (7) and (9) the density of a chain of length i is

ρi =
(
ρ1

q̃1

)i

q̃i . (10)

The explicit calculation of the distribution of chain lengths requires an approximation for the
partition function of individual chains. The latter may be written as

qi = 1

h3i i!

∫
dp3i exp

(
− β

3i∑
k=1

p2
k

2m

)
qCi (11)

where h is Planck’s constant,m the mass of a monomer and p3i the set of cartesian coordinates
of the linear momenta of the monomers. qCi is the configurational partition function:

qCi =
∫

d�r1 · · · d�ri dω1 · · · dωi exp(−βφ(�r1, . . . , �ri, ω1, . . . , ωi)) (12)

with �rk the position vector of a dipolar hard sphere in the chain and ωk the set of angles that
describe the orientation of the dipole. φ is the sum of the potentials (1) between all pairs of
spheres in the chain. Integrating the momenta in (11) we find for the partition function of a
chain

qi =
(
q1

V

)i
qCi

i!
(13)

with q1 = V/λ3 and λ the de Broglie wavelength of a monomer.
We proceed by calculating qCi , using an approximate method that is valid for short-ranged

interactions in the limit of strong dipoles, i.e., for long chains [12, 14]. The result is

qCi = V exp[(i − 1)S0] (14)

where S0, the free energy of a bond (divided by −kBT ), is given by [15]

S0 = 2µ∗2 + ln

(
πσ 3

24µ∗6

)
− 3

2µ∗2 . (15)

Substituting (14) and (13) in (10), we obtain for the density of chains of length i [14]

ρi = ρi1
exp[(i − 1)S0]

i!
. (16)

The distribution function ρi depends on the translational partition function through the fact-
orial i!; this differs from the findings of other works on dipolar chains [11, 12, 16], surfactant
systems [17] and living polymers [18]. The translational partition function of the aggregates is
usually neglected (set to 1) and the inclusion of this factor is not discussed in the literature (with
the exception of [16]). If the chains (or, more generally, the aggregates) are solid-like, then
this factor does not appear in the distribution function since the monomers are distinguishable.
This assumption, however, is not reasonable for the dipolar hard-sphere fluid, since it has been
shown [4, 14] that the spheres diffuse through all of the chains in the course of equilibrium
simulation runs.

Substituting (16) in (6), we obtain for the total density of spheres

ρ = ρ1 exp(ρ1eS0). (17)

The density of free monomers, ρ1, is calculated through this relation, for a given ρ and, µ∗,
and, using (16), the equilibrium chain distribution is determined. The mean chain length, N̄ ,
is easily calculated from (16) and (17), and is found to be

N̄ = ρeS0

exp(ρ1eS0)− 1
. (18)
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The equilibrium chain length distribution obtained from (16) underestimates the number
of long chains and this difference becomes more pronounced at high values of the dipole
moment [14]. A comparison of theory and simulation [5] (see table 1) also shows that the
inclusion of i! eliminates the (order-of-magnitude) discrepancies found in previous work [12].
For the lowest density and highest dipole moment, the present theoretical results are in
quantitative agreement with simulation. We conclude that the living polymer theory is capable
of describing semi-quantitatively the structure of a dipolar system in the strongly dipolar
regime.

Table 1. Mean chain length: comparison of the theoretical results of [14], those from [12] and the
simulations of [5]. ρ∗ is the reduced density and µ∗ the reduced dipole moment defined in the text.

ρ∗ µ∗ N̄ from [5] N̄ from [12] N̄ from [14]

0.3 2.0 2.7 1.94 1.36
0.3 2.5 5.2 7.09 2.79
0.3 3.0 16.5 60.0 6.19
0.3 3.5 27.0 966 11.2
0.2 3.5 24.6 789 10.8
0.1 2.0 2.6 1.43 1.16
0.1 2.5 6.7 4.36 2.18
0.1 3.0 24.5 34.8 5.27
0.1 3.5 24.2 558 10.2
0.05 3.5 30.4 395 9.57
0.02 2.0 2.3 1.11 1.04
0.02 3.5 8.4 250 8.75

3. Interactions

The free energy (5) cannot be used to calculate the phase diagram since it neglects interactions.
A perturbative calculation of the excess free energy due to the hard-core and dipolar interactions
between the chains requires knowledge of the (many-body) anisotropic correlations that
characterize the ideal system. This difficulty is overcome by assuming that a chain consists of
independent linear segments of length !. The interacting system is formed by these segments
and free monomers. The excess (mean-field) free energy is calculated from the effective
interactions between segments and free monomers, in the limit ! 
 σ [12, 13, 19]. In spite
of the limitations of this mean-field approximation, a qualitative agreement with simulation
results is obtained.

The excess hard-core free energy of the system of segments is approximated by [12, 13]

βf HC
ch (ρ) = 3

8
ρ

4η − 3η2

(1 − η)2
= 3

8
βfCS(ρ) (19)

where η = (π/6)σ 3ρ. Similarly, the excess free energy of the free monomers is [12, 13]

βf HC
ch (ρ) = 5

8
ρ1

4η1 − 3η2
1

(1 − η1)2
= 5

8
βfCS(ρ1) (20)

where η1 = (π/6)σ 3ρ1.
The excess free energy due to the dipolar interaction between chains, and between chains

and free monomers may be neglected [12, 13]. By contrast, the excess free energy due to
the dipolar interactions between free monomers is isotropic and attractive, resulting from a
weak residual potential, since the anisotropic dipolar interactions were taken into account in
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the calculation of the chain distribution function. This term is difficult to calculate and we
have obtained only rough estimates [13, 19]. Thus, in the following we will calculate the
properties of the DHS fluid as a function of a parameterA in terms of which the corresponding
(mean-field) free energy is

βf dd
m (ρ1) = −1

2
Aσ 3ρ2

1µ
∗2
. (21)

The critical behaviour of the DHS fluid described by the free energy (5) + (19) + (20) +
(21) depends on the value of A: for A > Aco � 0.284 ordinary liquid–vapour condensation
occurs between two phases of free monomers; for A < Aco there is chain formation at low
temperatures (similarly to the ideal case) and there is no condensation. Our systematic study
confirms earlier suggestions [11].

Finally, in order to compare the theory with the simulations of [8], we added to the dipole–
dipole potential a Lennard-Jones tail, φLJ (r) = −ε0(σ/r)

6 and defined λ = ε0σ
3/µ2 as the

ratio of the dispersion to the dipolar interactions [8]. The free-energy contribution from these
isotropic interactions was calculated in [12] and used in [13, 19].

For A < Aco, the trends of the critical temperature and density observed in the simul-
ation are captured semi-quantitatively by the theory and are reproduced in figure 1, for
A = 4π/81 < Aco [19]. The theoretical liquid–vapour critical line continues for lower values
of λ, in contrast to the case for simulations for λ < 0.3 which show no sign of condensation.
As the critical density decreases and the mean chain length (at the critical point) increases
exponentially with decreasing λ, these critical points become undetectable with conventional
simulation algorithms. We note that at low densities and temperatures the predicted coexistence
between chains may be pre-empted by the gas–solid coexistence or by an ordered (ferroelectric)
liquid phase.

Figure 1. Comparison between the results of theory and simulation for the critical line of the dipolar
fluid. The circles are estimates of the critical densities and temperatures from the simulations of [8],
corresponding, from the highest to the lowest temperature, to λ = 1, 0.75, 0.6, 0.5, 0.4 and 0.35.
The dashed line is the theoretical result calculated with A = 4π/81 in (21) [19]. ρ∗ = σ 3ρ is the
reduced density and T ∗ the reduced temperature defined in the text.
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